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the density profiles near curved walls 
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Okinawa 903-01, Japan 

Received 23 May 1994 

Abstract On the h i s  of the analytical solution of the Omstei&&mike equation in our 
previous paper, a model is presented for the calculation of the fluid densiry profiles near curved 
walls. The result of the model is compared with the computer-simulation data, and theagreement 
is reasonably good. An effect of wall curvature &d the cavity free energy ax discussed. 

1. Introduction 

In order to understand surface phenomena, the structure of a hard-sphere fluid near a hard 
wall has been studied intensively by means of computer simulations (Liu and Kalos 1974, 
Snook and Henderson 1978, Henderson and van Swol 1984, Lupkowski and van Swol 
1990) and with a number of theoretical methods. The latter include theories starting from 
the Omstein-&mike (02) equation (Henderson et a1 1976, Waisman eta1 1976, Thompson 
era( 1980, Henderson et al 1980, Plischke and Henderson 1986). Much progress has been 
made in the understanding of the fluid structure: for example, the density profile near a flat 
wall. 

In the theoretical works above, the total system of a fluid and a wall has been treated as 
a limiting mixture in which one of the species is dilute enough and infinitely large, namely, 
a solution consisting of solvent hard spheres and an infinitely large, solute hard sphere. 
Since a real wall generally may consist of many local curved surfaces with various finite 
curvatures, the size effect of the solute hard sphere on the structure would be interesting. 
Recently, Degreve and Henderson (1994) presented the simulation data of the fluid density 
profiles near a solute hard sphere of varying radius. 

In our previous paper (Ginoza 1994), we presented the simple mean-spherical- 
approximation (MSA) solution of the 02 equation in a hard-sphere Yukawa fluid containing 
an arbitrary-size solute hard sphere. This solution prompts us to calculate the density 
profiles in the case of varying radius. The aim of the present paper is to use the solution 
and investigate the fluid density profiles near curved walls. 

This paper is organized as follows: in section 2 and the appendix, we describe our 
model (the MSA solution) briefly. It is then applied to the calculation of density profiles 
near curved walls in section 3. The paper concludes with a summary and discussion in 
section 4. 
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2. The model 

Let us consider a fluid in a volume V with temperature T. The fluid consists of N I  solvent 
hard spheres with diameter U] and a solute hard sphere with diameter uz. We regard the 
fluid as a two-component mixture in the dilute limit 

P 2 4  + 0 (1) 

where pz is the number density of the solute spheres. 
The static structure of the mixture is described by the total correlation function hjj(r) 

and the direct correlation function cij(r), which are related to each other via the oz equation. 
For the 02 equation, we shall apply the following closure relations: 

gj j ( r )  = hjj(r) + 1 = 0 r < uij =~(q + uj)/Z 

ci j (r)  = (Kij/r)e-z(r-u~J r > qj (W 

where K;j and z are parameters either given by the MSA condition or determined from other 
physical criteria in the case of the generalized MSA (Waisman 1973). In this paper, we will 
apply the latter case. In the limit of equation (I), the resultant structure of the mixture does 
not depend on K22. Tkefore,  without any loss of physical meaning, we may choose Kij 
to be (Ginoza 1994) 

Kij = KZiZj (i. j = 1,Z). (3) 

The OZ equation in the Baxter formalism (Baxter 1970) with the closure relations (2a) 
and (2b) has been solved (Blum and H0ye 1978, Blum 1980). The solution is given in 
terms of the Baxter function, Q;j(r ) ,  as follows: 

Qij(r) = Q;(r)  + Dij e-y ( 4 4  

where 

Q$(r) = 2 
l ( r  - ujj)(r - Aj;)Aj + (r - q j ) &  + Cjj(e-'' - e?<j) for A j j  < r < q j  

otherwise 
(44  

where Aj;  = (uj - ui)/Z. In the factorizable case like equation (3), the expressions for the 
coefficients in equations (4u) and (4b) can be extremely simple, given in terms of functions 
of a set of five parameters: two system parameters (q(= n p u f / 6 ) ,  ol/uz) and three model 
parameters, p being the number density (p  = N l / V )  (see the appendix). 

On the basis of the model defined by the Baxter function above, thermodynamical 
properties and static structures of the fluid in consideration can be discussed: hi#) is 
obtained from the following integral equation (Baxter 1970); 

I o  

where we used equation (1). 
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3. The density profiles near the curved walls 

There are several ways of calculating gj,(r) from the Baxter function (see, for example, 
Chang and Sandler (1994) and references therein). In this paper, we perform the direct 
numerical integration of the following equation, which is obtained from equation (5) in the 
usual way: 

2zrgij(r) = Aj(r - uj/Z) +pi - zCije-i' 

+&WI l x h ( u i ~  +OIS)S~I(UCI +uls)Qlj(Ajl +UI(X-S) )  (6) 

where x is defined by r = qj + q x .  From equation (6), we obtain immediately (Ginoza 
1994) 

gii(ui1) = (1/2no;.d[uiA1/2+ PI - ~Ci1e-~""] = g? + c i ~ ( u ~ t ) ( X i / Z ~ ) X i / Z i  (7) 

where g:' = [ 1 +  f (v) / ( l  +u~/ui)l/A. 
Now, our model is characterized by equation (Zb), which is specified by three 

parameters: z, c11(u1) and C ~ Z ( U I Z ) .  In order to investigate the density profiles, we shall 
determine these model parameters as functions of q and UI/U~ in the spirit of the generalized 
MSA (Waisman 1973). We adjust model parameters according to the procedure below. This 
procedure relies on an accurate approximation to the pressure, p .  of the hard-sphere fluid 
(Carnahan and Starling 1969): I .~ .~ 

P/PkBT = (1 + 17-k 17' - V 3 ) / ( l  - V I 3 .  ( 8 )  

Let us first discuss how to determine z and c ~ ~ ( u I ) . ~  For this purpose, we first note the 
following, well known thermodynamic relations for the hard-sphere fluid 

PlpkBT = 1 + 4 ~ 1 1 ( ~ 1 )  (9) 

pksTKT = S(0) (10) 

where kB is the Boltzmann constant. KT is the isothermal compressibility, and with the use 
of equation (8) we can obtain 

pksTKT = (1 - ~ ) ~ / ( l +  417 + 477'~- 4q3 + q4). (11) 

S(0) is the value of the static structure factor in the small-wavevector limit, and in the 
Baxter formalism of the oz equation it is well known that S(0) is related to the coefficient, 
AI, of Q i j W  as 

S(0) = (Zx/A1)'. (12) 

Now, once 7 is given, we can obtain the values of the left-hand sides of equations (9) 
and (IO) from equations (8) and (II), respectively. On the other hand, the right-hand sides 
of equations (9) and (IO) are given on the basis of our model: as a matter of fact, they are 
implicit functions of z and c11(u1). Therefore, equations (9) and (IO) work as the criteria to 
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determine z and C I I ( ~ I ) .  Actually, we can obtain explicit functions for z and c11(u1) with 
the use of equations (7), (12), (Al), (AZ), (A3). and (A4): 

201 = ["(fz - fo )  - f O J ~ l / ( f ? / Z  - fofz) (13) 

rul  = (fi - Z G / ~ ) / ~ O  (14) 

CIIGJI) = ( ~ I / W ( Z I / X I ) ~  (15) 

with fo = (1 + Zv)/A, ji = ~ ( v / A ) ~ ,  and fz = fo - J1+ 4v +4v2 - 4v3 + q4/A 

with the definition (A2e). 

012 dependences of qz(u12) .  We first note the following exact relation: 
Let us next discuss the matter of qz(u12) .  This means the determination of the q and 

p / p k s T  = SIZ(OIZ) + 0). (16) 

Equations (9) and (16) with equation (8) give a glz(a1z) q dependence at ul/aIz = 1 and 
0, respectively, but not otherwise. Following Degreve and Henderson (1994), let us assume 
that g~z(ulz) is linear with respect to ul/alz. Since g1Z(a12) is equal'to g1l(a1) at UI /a12 = 1 
and to glz(co) at u1/uIz = 0, we obtain 

g d a d  = sll(ul)oi/aiz + gdm)( l  - ai/uiz). (17) 

Substitution of equation (A7Jj into equation (7) and the use of equation (17) with 
equations (9) and (16) yield q and a12 dependences of CIZ(UIZ) as follows: 

C I Z ( U ~  = [Q~(zu~,v,l)+~a~Q~(za~,q, l ) l [ l+ru140(za1,~)1 

where x = ul/uz and 

SDH = (1/A3N1 - V / ~ ) U I / ~ I Z  + (1 + v + - q 3 W  - d 4 1 .  (19) 

Degreve and Henderson (1994) found that equation (17) with equations (9) and (16) gives a 
result in a quite good agreement with their computer-simulation result. Since equation (18) 
is equivalent to equation (17) in the logic of our model, the model inherits the same result. 

Now, let us investigate the density profiles near the curved walls with the use of model 
parameters easily calculated from equations (13). (14). (15) and (18) with equation (19). In 
figure 1, the behaviour of the radial distribution function, glz (r ) ,  is shown as a function of 
x in the case of q = 0.30 and al/az = 0.0850, where r = u12 + ulx. The full curve is 
the present result and the dotted curve is that of the simulation by Degreve and Henderson 
(1994). The agreement is reasonably good. 

In figure 2, we show the q/uz dependence of glz (r )  in the cases of v = 0.40, 
al/az = 1.0 (the full curve), 0.1 (the dotted curve) and 0.01 (the dashed curve). From 
the figure, it is obvious that a decrease of q/u2 results in an amplification of the oscillatory 
behaviour of g&). We also investigated the cases of q/uz = and but the 
value of glz(r) has no significant change from that of q/uz = 0.01. No change of the 
conclusion is introduced by other values of q, but the first minimum of ~ I Z  for al/uz = 0.01 
becomes negative for 0 0.45. This is the usual breakdown of the theory. 
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Figure 1. The radial distribution function. g ~ 2 ( r ) ,  as 
a function of x in the case of q = 0.30 and a1 fa2 = 
0.0850, where r = au + UIX. The full curve is the 
present result and the dotted one is that of the simulation 
by Degreve and Henderson (1994). 

Figure 2. The q/oz dependence of g~z(r) with r = 
612 + CIX, where 9 = 0.40 and r n l 0 2  = 1.0 (the 
full curve), 0.1 (the dotted curve) and 0.01 (the dashed 
curve). 

4. Summary and discussion 

We have presented the generalized MSA model on the basis of the analytical solution in 
our previous paper (Ginoza.1994). With the use of model parameters determined by three 
criteria given by equations (9). (IO) and (16) and the assumption given by equation (17), 
we have applied the model to the calculation of the radial distribution function between 
solvent and solute spheres, g&). 

Regarding the contact value of glz(r),  the model parameters are chosen so as to 
reproduce the approximate expression (equation (19)) by Degreve and Henderson (1994) 
which is in quite good agreement with their simulation data. We have compared the 
calculated behaviour of g12(r) with that of the simulation in the case of 7 = 0.30 and 
U, /UT = 0.0850 (Degreve and Henderson 1994), and the agreement is reasonably good. The 
size effect of the solute sphere on glz(r) has been investigated, and it has been concluded 
that a decrease of q / u Z  results in an amplification of the oscillatory behaviour of glz(r), 
but no significant change in the region of q/uz  < 0.01. 

The cavity~free energy, W ( r ) ,  is the reversible work required to produce a spherical 
cavity of radius r in the fluid. This is calculated by using the fact that the cavity affects the 
remainder of the fluid in the same way as the~solute hard sphere in the fluid. Since it can be 
calculated from the contact value of g&) (Reiss et a1 1959), it is interesting to compare 
the result of our model with the Monte Carlo result of Attard (1993). As described above, 
our model gives equation ~(17) for the expression of the contact value of glz (r ) .  Using 
equation (17), we obtain 

W ( A )  = g w ( r )  = -log(l- 7 )  + 24V[fbl(ol) - glz(oo)~(h~ - + ; ~ I Z W ( A ~  - ;)I 
(7.0) 

where h = r / q  + and gll(o1) and glz(co) are given by equations (9) and (16) with 
equation (S), respectively. In table 1, we show the present result of equation (20). the 
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Monte Carlo result (Attard 1993) and the result of scaled-particle theory (Reiss er a1 1959, 
Reiss 1965, Lebowitz et a1 1965). The agreement is quite good in the region where the 
cavity is larger than the fluid hard spheres, h > 1. 

Table 1. The cavity free energy, pW(r) ,  in hard-sphere fluids aI variotrs densities, pa?: MC, 
Monte Carlo result (An& 1993); P, present result by equation (20); sm, scaled particle theory. 

pa: = 0.4 pa: = 0.6 

.4 MC S I T  P MC SPT P 

0.55 0.4 0.33 0.32 0.5 0.54 0.49 
0.65 0.7 0.59 0.56 ~ 1.0 1.04 0.90 
0.75 1.0 0.98 0.93 1.8 1.82 1.61 
0.85 1.6 152 1.46 2.9 2.95 2.67 
0.95 2.2 2.24 2.17 4.4 4.49 4.15 
1.05 3.1 3.16 3.08 6.4 6.53 6.12 
1.15 4.3 4.31 4.22 8.9 9.10 8.65 
1.25 5.7 5.72 5.62 11.9 12.30 11.79 

Our model is characterized by equation (Zb), where c11(r) and c&) have the same 
'damping factor', exp(-u). Henderson et al (1980) characterized c11(r) and c12(r) by 
different 'damping factors', but they treated the case of q/uz = 0. 

t In equations (60). (66). (64. (6a) and (6s) in our previous paper (Ginam 1994), a, is replaced erroneously by 
oj. For these equations read equations (Ala), (Alb), (Ale). (AI@ and (AZC), respectively. 
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Functions used above are defined as follows: 

h ( z ,  x )  = (1 - e-+')/z (A34 

@1 (z ,  x )  = IX - Z/Z - (x  + z/2)  e'/x~/z3 

Qo(z, Y, X )  = x + f (Y)4(z3 X )  - 4f(y)@l(z, x)[l+ 212 + f ( Y ) I  

. (A3b) 

(A3d 

and 

%(z,Y,x) = x @ o ( z , x )  -4J(y)$l(z,x) (-434 

while the parameter r in equations (AZa-j) is the physical solution of the following equation 
(Ginoza 1994): 

rz + zr + KZ& = 0. (A41 
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